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The pseudo labels generated in early iterations can be easy and the coarse approximations of exact teacher re-rankings. After the student make
Overview progress and gradually builds up its capacity, the pseudo labels in late iterations would be more closer to the exact teacher re-rankings with
higher difficulty level. The whole CL-DRD (Curriculum Learning for Dense Retrieval Distillation) is illustrated in the following figure:

We create a curriculum learning based generic optimization framework called CL-DRD that controls the difficultly level of training data produced Step 1: retrieve & rerank

by the re-ranker (teacher). CL-DRD iteratively optimizes the dense retrieval model (student) by increasing the difficulty of knowledge distillation Top-200 documents Top-200 documents
data made available to it. " @
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Experiments
Siap Z: train densa reineval using pseudo labels cuery: O Datasets: We train our models on MS MARCO-Train dataset, and evaluate their performance on MS MARCO-Dev, TREC'DL-19 and TREC'DL-20
How to make bobba tea at home? datasets.
| = The CL-DRD Models: We augment two dense retrieval models by using CL-DRD: (1) TAS-B + CL-DRD (single-vector retrieval model). (2) Col-
nse Psaudo labels . . . . . .
Retrieval | BERTv2 + CL-DRD (multi-vectors retrieval model). The performance comparison with other baseline models is as follows:
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Sparse Retrieval
Curriculum Learning for Knowledge Distillation BM25 - 187 196 497 290 487 288
DeepCT - 243 250 550 341 556 343
docl5query - 272 281 6472 403 619 407
= Challenge: The re-rankings of the teacher give us a great flexibility to generate pseudo relevance labels for knowledge distillation. The most Multi-Vector Dense Retrieval
straightforward way is the "identical generator” where the student model would learn the exact top-200 re-ranking of the teacher. However, CO:BERT X 360 - - .’ - - -
. : " : - . o ColBERTV2 v 384 389 7 464 712 473
student and teacher models have different architectures and capacities, the identical generator might lead to the sub-optimal performance. COlBERTV2 + CL-DRD (Ours) v 394 308 P 470 217 487

= Solution: Motivated by the curriculum learning, We iteratively optimize the student model by controlling the difficulty level of pseudo Single-Vector Dense Retrieval

relevance labels generated in each iteration. The pseudo label generator for each iteration is illustrated in the following figure: ANCE X .330 336 648 371 646 408
ADORE X 347 352 683 419 666 442
RocketQA v .370 - - - - -
First K Hard negative Riemaining TCT-ColBERT v 335 342 670 391 668 430
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v .382 386 725 453 687 465
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' Ablation Study: We plot the performance of TAS-B + CL-DRD after each curriculum iteration on three datasets.
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